
International Journal o f  Theoretical Physics Vol. 9, No. 6 (1974), pp. 393-403 

T h e  Goos-H~inehen Shi f t  on a Layer  

J. STRNAD and A. KODRE 

Odsek za fiziko and Institut J. Stefan, Univerza v L/ubljani, 61001 Ljubl]ana, Jugoslavi/a 

Received." 31 July 1973 

Abstract  

A b e a m  of  linearly polarised light suffering total  internal reflection is shifted longitudinally. 
Two different shifts are found ,  belonging to the  eigenstates o f  TE and TM polarisation. A 
m u c h  smaller transverse shift occurs  when  left  and  right circular polarisation are considered 
as eigenstates. The  measured  shifts agree well wi th  theoretical  predict ions and are referred 
to as Goos-H~nchen  effect.  In  this  contr ibut ion shifts are investigated for the  case of  frus- 
trated total  internal  reflect ion o n  a th in  optical barrier. As well known ,  there  appears,  in 
addit ion to the  reflected beam,  a t ransmi t ted  beam for which h i ther to  the  shifts were no t  
reported.  

1. In troduct ion  

The shifts of a light beam suffering total internal reflection, or the Goos- 
H~chen effect, recently have attracted appreciable attention. The longitudinal 
shift of an unpolarised beam was measured exploiting repeated total reflection 
in a glass plate (Goos & H/inchen, 1947). Apparently, some authors were aware 
of this effect long ago. Calculations indicated that the shift of a linear pdarised 
beam should depend on the direction of polarisation (Artmann, 1948; 
Fragstein, 1949). This was confirmed experimentally (Goos & Lindberg- 
H~inchen, 1949). Reliable measurements gave full support to results of 
improved calculations (Wolter, 1950). Formulas, valid also for angles of inci- 
dence far away of the critical angle, were derived by means of the energy 
flux in the evanescent wave (Renard, 1964). Insignificantly different for- 
mulas were deduced directly from Maxwell's equations (Lotsch, 1968, 1970, 
1971).t 

Experiments with laser light gave new impetus to the field (Mazet et  aL, 
1971). They demonstrated that in observing the longitudinal shift an unpola> 
ised beam is split into two, corresponding to the eigenstates TE and TM. This 

t Lotsch 's  published thesis ( 1 9 7 0 , 1 9 7 1 )  conta ins  an elaborate list of  references.  
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was interpreted as a Stern-Gerlach type of experiment with photons and it 
was speculated that the photon may have a finite rest mass (de Broglie & 
Vigier, 1972). The transverse shift was measured (Imbert, 1970, 1972a, 1972b) 
being predicted some time ago (de Beauregard, 1965; Schilling, 1965). 

From a theoretical point of  view the evanescent wave in optically less-dense 
medium offers an interesting possibility: it may have some tachyonic proper- 
ties (de Beauregard et  al., 1971; de Beauregard, 1973).t It is understood that 
within the evanescent wave signals cannot be transmitted faster than light in 
vacuo, since on the contrary macrocausality would be violated. The expected 
tachyonic properties can only be of local character. They may show up in 
interaction of photons in the evanescent wave with an atomic system. The 
component of  the momentum hq transferred to the system and the corre- 
sponding transferred energy h w  may obey in this case a relation heo/hq > c, 
c being the velocity of light in vacuo. Carniglia & Mandel (1971) have quantised 
the evanescent electromagnetic field and claim that the incident, evanescent, 
and reflected fields comprise an entirety. This would entail that the tachyonic 
character of evanescent photons may not be directly observable. Conclusive 
experiments, as yet, do not exist. Thus, the observability of the local tachyonic 
character of  evanescent photons is still questionable. 

In view of these interesting implications it appears worthwhile to investigate 
all possible aspects of  the Goos-H/inchen effect and of the evanescent wave. 
Such reasoning lead us to the investigation of the Goos-H~nchen effect in 
frustrated total reflection. We examined the field in the evanescent wave and 
calculated the shifts of the reflected and transmitted beam considering a thin 
layer of optically less-dense medium. Section 2 deals with electromagnetic field 
within and outside the layer in the plane wave approximation. Boundary con- 
ditions are exploited to get the amplitudes of  fields. In Section 3 the longitudi- 
nal shifts of the reflected and transmitted beam are deduced. This is done for 
linear polarisation first by means of a simple spatially modulated plane wave. 
In Section 4 arguments concerning the energy flux in the evanescent wave are 
exploited. The transverse shifts are calculated by the same argument in 
Section 5. In Section 6 the main results of  the calculations are discussed and 
the feasibility of experimental observation is considered. 

2. Ref lec t ion  and Transmission Coefficients 

In order that the beam of electromagnetic waves is well defined its width 
has to be of the order of tens of wavelengths whereas the layer thickness, in 
the range of interest, has the order of magnitude of a wavelength. Thus, in 
our considerations the plane wave approximation is justified. 

The layer of  thickness Z and index of refraction nr = e 1/2 is bounded by 
planes z = 0 and z = Z. It is surrounded on both sides by a medium with index 
of refraction n i = 6112. The magnetic permeabilities of both media, #r and/1i, 

The articles of de Beauregard et al. (1971) and of de Beau.regard (1973) present a 
thorough review, whereas we quote the main contributions only. 
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are put equal to unity. The plane x z  is the plane of incidence and 0 i is the 
angle of incidence. 

A solution of Maxwell's equations, involving an incident wave, can be con- 
structed in the following way: 

z < 0  

E 1 = exp( - i co t ) { ( -E i i  cos Oi, E±, ElL sin Oi) exp[iniko(x  sin 0 i + z cos Oi) ] 

+ (RHEII cos Oi, R.~E±, RItEII sin Oi) exp [iniko(x sin 0 i - z cos Oi) ] } 

0 < z < Z  

E2 = exp ( - i co t ) ( ( -S f lE i  I cos Or, S±E±, SllEil sin Or) exp[inrko(x  sin O r 

+ z cos Or) ] + (PIIEII cos Or, P±E±, PIIEII sin Or) exp[inrko(x  sin O r 

- z cos 0r)] } 

Z < z  

E 3 = e x p ( - i w t ) ( - T i i E i i  cos Oi, T±E±, TIIE[I sin Oi) exp[ in iko(x  sin 0 i 

+ z cos Oi) ] (2.1) 

ko = 27r/},o is the magnitude of the wave vector of the incident wave as 
measured in vacuum. E± is the component of the electric field perpendicular to 
the plane of incidence and EtL is the component parallel to the plane of inci- 
dence. The components E± and Etf in the incident wave are connected with 
the corresponding components in the reflected wave through the reflection 
coefficients R± and RtI and with those in the transmitted wave through the 
transmission coefficients T± and Tll. The coefficients S±, SII, P±, and PII con- 
nect the field in the incident wave with the field inside the layer. The angle O r 
is given by Shell's taw n i sin 0 i = nr sin Or. 

The magnetic fields in the above plane waves are obtained as B = nc - l ( k / k )  x E, 
with the corresponding wave vector k. 

The fields in the layer and in the surrounding medium are coupled together 
with the well-known boundary conditions: the tangential components of 
electric field E, the normal components of eE and all the components of the 
magnetic field B are to be continuous across both boundary planes. Eight 
independent equations, obtained from the above conditions, decouple into 
two distinct sets corresponding to the TE or ± and to the TM or [I polarisation 
(Kodre & Strnad, 1973). Solving these equations for the coefficients R, S, P, 
and T we obtain 

R = ~-1/3 x sin 6r 

S = o~-1/]2 e-i6rni c o s  0 i 
(2.2) 

P = c~-1~3 ei~rni c o s  0 i 

T = 2o~-tninr cos 0 i cos O r e - i6i  
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Shorthand notat ions 6i = n i k o Z  cos 0 i and 6 r = n r k o Z  cos O r and 

~± = 2n in  r cos 0 i cos O r cos 8 r - i(ni 2 cos 2 0 i + nr 2 cos 2 Or) sin 6 r 

131± = ni2 COS20i -- nr2 COS2 Or (2.3) 

{32z = n r cos O r + n i cos 0 i 

[331 = nr cos Or - ni cos 0 i 

for the TE case and 

~II= 2ninr  cos 0 i cos O r cos 6 r - i(nr z cos 2 0 i + ni 2 cos 2 Or) sin 6r 

/31 t1 = nr 2 cOs20i - ni 2 c°s2 Or (2.4) 

/32 II = ni cos O r + n r cos 0 i 

/3311=nicos0 r - nr cos O i 

for the TM case were introduced. The coefficients R and T are often encoun- 
tered in the l i terature (e.g. Hall, 1902). 

3. The Longitudinal  Sh i f t  

Let A denote the ampli tude o f  the transverse field (E in the TE case, B in 
the TM case). R A  and TA are then the amplitudes of  the reflected and trans- 
mit ted wave, respectively, provided that  the proper  index ± or tl is taken for R 
and T. Following Wolter (1950), let  us further consider a composi tum of  two 
plane waves with the same frequency and amplitude but  slightly different 
incident angles 0 i and 0 i - d O ± ,  respectively. I f  a phase difference of  lr is 
introduced the composi tum 

(0, A exp[ in iko(x  sin 0 i + z cos Oi) ] 

- A  exp [inik o {x  sin(0i + d O i ) - z  cos (oi -dOi)}] ,  O) 

= ( O , ~ i  {A exp[ in i ko (x  sin Oi +z  cos Oi)] }, O)dOi (3.1) 

will be marked by a plane x cos Oi - z sin Oi = 0 of  zero field. Similarly, the 
reflected wave composi tum can be writ ten as 

8 
(0,  ~ {/L4 exp [iniko(X sin Oi + z cos Oi)] }, O) dO± (3.2) 

Searching for the marking plane in this case, we obtain the following spatial 
dependence of  the amplitude 

irlikoR (x sin 0 i + z cos Oi) + 8R/O0 i 

Owing to the complex nature of  R there is no plane of  zero field. However, a 
plane o f  minimum field 

x sin 0 i +z  cos 0~. + (n iko)  -a Im(SR/RSOi )  = 0 
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can be found, where only the out-of-phase field A R e  (OR/R~ Oi) exists. 
This plane is accepted as the marking plane in the reflected beam. Hence, the 
shift DR can be extracted as 

DR = - (n i ko )  -1 Im (DR/R aOi) (3.3) 

By the same device we obtain the shift in the transmitted wave as 

D T  = - - (n iko)  -1 Im  (OT/T OOi) (3.4) 

Formula (3.3) was obtained following different ways by numerous authors 
(Artmann, 1948; Fragstein, 1949; Wolter, 1950; Chiu & Quinn, 1972) who 
studied the total internal reflection on a plane interface between two media. 

I z , / / 
/ /-..oT / 

Z~ ~ / : 

Oi/ i 

Figure 1 .-Schematic presentation of the layer and the quantities involved. 

Of course, R± and RII in their calculations were the well-known Fresnel coef- 
ficients. The shifts obtained by the above method represent an approximation 
valid for angles of incidence close to the critical angle (Renard, 1964). More- 
over, Wolter (1950) considered a more realistic case of a beam of finite angular 
divergence. 

We shall apply the above equations to the case of reflection and transmission 
on a thin optical barrier called a 'totally' reflecting layer and described by coef- 
ficients (2.2)-(2.4). In this case n r < ni and 0i > Oc = arcsin (nr/ni) .  Hence, 
cos O r = i(ni  2 sin 20i/nr 2 - 1) 1/2 is imaginary and so is 6r = n~koZ cos Or = i7 
with 3' = koZ(n i  2 sin 20i - nr2)  1/z. From hereon the calculus is straightforward, 
though rather lengthy. A welcome general result 

D T  =DR + (n i ko )  -1 06i/30i = D R  - Z sin Oi (3.5) 

shows up, connecting the shifts of the reflected and transmitted beam. Led by 
this result we redefine the shift D~r of the transmitted beam as a distance from 
the point x = O, z = Z rather than from the origin O (Fig. 1). Then D~- = DR, 
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i.e. the transmitted beam lies symmetrically to the reflected one. The final 
result for the shift 

D)  = DR = D (3.6) 

can be written in the form 

D = D o F ( Z )  (3.7) 

Here Do denotes the familiar shift for a single totally reflecting plane obtained 
by earlier authors and corresponding to the limiting case for Z ~ oo of (3.6): 

Do± = 2 sin Oi/ko(ni 2 sin 2 0 i - nr2) 1/2 (3.8) 

and 

D011 = Do±/{(1 +ni2/nr  2) sin 2 0 i -  1) (3.9) 

The function F(Z)  is 

F ( Z )  = (sh~ch 7 - B) / ( sh27  + C) (3.10) 

with 

and 

B 1 = ni 2 cos 20i(ni 2 + nr 2 - 2hi 2 sin 20i)/(ni 2 - nr2) 2 

C± = 4ni 2 cos 20i(ni 2 sin 2 0 i - nr2)/(ni  2 - nr2) 2 

Bll = ni 2 cos 20i {ni 2 + nr 2 - ( n r  2 + ni4/nr  2) sin z Oi)/ 

(ni 2 - nr2)z {(1 + ni2/nr 2) sin 20i -- 1} 

CII = C±/{(I + ni2/nr 2) sin 20i - 1} 2 

(3.11) 

(3.12) 

4. Longi tudinal  Sh i f t  by  the Energy  A r g u m e n t  

Shifts can also be deduced from the longitudinal energy flux within the 
layer. The flux density is the time average of the Poynting vector 

J2 = ¼c2eo(E2 x B~ +E~ x B2) (4.1) 

Inserting the electric field E2 (2.1) and the corresponding magnetic field B2 
we obtain 

/2x = ½ceoni sin Oi{E?EL(S?SI e -2~" + P~LP.L e2~" + S.LP~. + S~P±) 

+ EtlEli(SIt* *Stl e-2"  +P~eli  e2" +SIIP~ + S~PII)} (4.2a) 

. i 2 _ nr2)1/2 12y = ~" ceo(ni /nr) (n i  sin20i 

{E~EII(S~LSII e-2f - P~PII e2f)  + E-LEI~(P±PI~ e2f  - S-LSI~ e-2~')} (4.2b) 
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/2z = ~ Ceo(ni z sin20i - nr2) 1/2 

{E~E±(P~S± - P±S~.) + EII*Ejl(PI~Stt - Ptl Sl~)} (4.2c) 

with ~" = ko(ni  2 sin 20i - nr2)l /2z.  
The longitudinal component (4.2a) can be interpreted as a flow of energy 

giving rise to the beam shifts 

Z 

(½C6oniE*E) -1 f ]2x dg = R * R D  R + T 'TOrT  ( 4 . 3 )  

o 
The reflectivity R*R and the transmissivity T * T  represent the reflected and 
transmitted part of the incident energy flux. For the two eigenstates TE and 
TM we obtain from (2.2)-(2.4) immediately 

R * R  = sh27/(sh23" + C) T * T  = C/(sh27 + C) (4.4) 

The constants C are given by (3.11) and (3.12). As expected 

R~Rj_ + T~Tj. =R~IRtl + TI~T[I = 1 (4.5) 

It is not possible to derive both shifts on the basis of the energy argument. 
However, we assume that equation (3.5) is valid for a wave packet of any form, 
though it was derived for a simple spatially modulated plane wave (3.1) only. 

~(z) 

0,5 

0 1 2 3 /, 5 
Z/;% --- 

Figure 2.-Functions/~±,/711, and/7C for a layer with n r = 1 in glass (n i = 1,524). The angle 
t o  of incidence is 7 above the  critical angle. 
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Figure 3.-Functions ff]_,/71! , and FC for the angle of incidence 45 ° . Other data as in 
Fig. 2. 

Both shifts DR and D~ following from the energy argument are measured 
symmetrically (3.6). We put the result again in the form (3.7) with 

if)o± = 2n i  2 sin 0 i cos 20i/ko(ni 2 sin 2 0 i - nr2)1/2(t7i 2 - nr  2)  (4.6) 

the relation 

/ ]o l l= / )o± /{ (  1 + n i2 /nr  2) sin20i - 1} 

being the same as (3.9). Functions F± and FII are of  the form (3.10) with 
other constants B: 

B± = (ni 2 + nr 2 - 2h i  2 sin 20i)/(ni  z - nr2) ,  C i  = C± (4.7) 

/~11 = {hi  2 + nr 2 -- (nr  2 + ni4/nr  2)  sin20i}/ 

(hi  2 -- nr2){(1 + ni2 /nr  2) sin 2 0 i -- 1 } Ell = CII (4.8) 

Figures 2 and 3 show these functions for two particular cases. The distinction 
between the results of  this section and the results of  section 3 lies in additional 
factors ni 2 cos 20i/(ni 2 -- nr 2) which go over in touni ty  for Oi -+ Oc. The same 
factor is found to make the distinction between Do± and Do± and between 
/3oil andDoli (Imbert,  1972). 

5. T h e  Transverse S h i f t  

The transverse shift of  circularly polarised beams is much smaller than the 
above longitudinal shifts and is more difficult to observe. We sketch the cat- 
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culation on the basis of the energy flux, whereby we again assume that the 
reflected and the transmitted beam are shifted for the same amount. Anal- 
ogously to equation (4.3) we obtain from the transverse component of the 
energy flux (4.2b) z 

* + * - 1  {½ceon i (E iE± ElIEIt)} f ]2y dz  
0 

= ½(R~R± + R~RI I )DcR  + ½(T_~T± + TI~TII)DCT = ff)C (5. l) 

½(R~R± + * " RIlRtl ) IS the reflectivity and ½(T~T± + TI~TII) is the ~ansrnissi~ty 
for circularly polarised light. Again the result can be written as D c = D c o F ¢ ( Z )  
with 

Dco = +- 2ni 3 sins Oi c°s20i/konrE(ni 2 - nr2) {(1 + niZ/nr2) sin20i - 1} 

and 

F c ( Z )  = sh27(sh27  + B c ) / ( s h 2 7  + C±)(sh27 + CII ) 

with 

BC = 2(ni 4 + nr 4) cos 20i(ni 2 sin 2 0 i -  nr2)/(ni  2 - nr2) 2 

((ni 2 +nr 2) sin 2 0 i -- nr z}  

The two signs of/)c0 refer to left and right circular potarisation. The constants 
Ci and Ctl are given by (3.1 t) and (3.12). 

6. Discussion 

The study of the Goos-H~inchen effect on a layer can complete the infor- 
mation gathered studying the effect on a single totally reflecting plane. Along 
with a reflected beam a transmitted beam appears here and the dependence of 
their shifts on the layer thickness can be studied. It should be noted that in 
the case of a layer both beams are shifted even in the region of normal reflec- 
tion (0 i < Oe) which is not the case with the reflection on a single plane. 

The argument based on the energy flux within the layer seems more strin- 
gent and the results more general than the results of Section 3. However, for a 
layer this argument seems incomplete, yielding not the two shifts but only 
their linear combination. This is a consequence of translational invariance of 
plane waves. To overcome this difficulty one would have to use waveforms 
without translational invariance, e.g. the marked wave of Section 3. We 
extracted the information missing in the energy flux argument from the marked 
wave method, using equation (3.5). 

As for the feasibility of experimental observation, it should be pointed out 
that layers with thickness of the order of magnitude of a wavelength are 
needed. Layers with Z > Xo are experimentally equivalent to a semi-infinite 
medium for most angles of incidence save the immediate neighbourhood of 
the critical angle. As, on the other hand, the magnitude of shifts increases 
with Z (Fig. 4), the region near the limit of observability of the transmitted 

28 
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beam would be optimal.  It should also be emphasised that  in the transmitted 
beam one actually measures D T and not  D T which was introduced for 
symmetry reasons. 

In the visible range the longitudinal shift could possibly be observed by  
means of  techniques described in the literature (Sandford, 1958; Coon, 1965; 
McDonald et  al., 1971). Either the transmitted or the reflected beam could be 

~- __. ._.---~-Oo,Ao O/~o 

3~ 
[ 
! 

2l 

'r 
0 1 2 

f ~ # '  I 

I 

Dm/h o 

oT,/xo'7 -. . 

! I 

3 

Z/~ o = 
Figure 4.-Shifts DRi  , D R II and DTll, DTI I for the particular case of Fig. 2 calibrated with 
Doi and Do II astaken from the experimental data of Wolter (1950). In this case Doi  
coincides with Doi and Doll coincides with Dol t if calculated according to equations (3.8), 
(3.9) and (4.6). 

used and it seems that even the Z-dependence of  the shifts might be measured 
if  repeated reflections were used as in measuring the shift for a tota l ly  
reflecting plane. 

I t  would be tempting to perform the measurements with microwaves. Here 
the main problem is the beam width and divergence. Yet the shift of  the order 
of  a wavelength should be observable at a beam width, say, ten wavelengths 
even in a single reflection or transmission. In this case it would not  be difficult 
to realise the layer as welt-def'med parallel gap of  adjustable width. 
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